
Mechanisms of Memory Protection

Eric Thomas Schneider
University of North Carolina at Chapel Hill

Abstract
We explore and discuss mechanisms of memory protection,
from well-used mechanisms such as segmentation and virtual
memory, to less deployed mechanisms such as capability-
based addressing, among others. We discuss how these mech-
anisms of protection work, and their implementation and use
in both industry and academic projects. We assess some of
the advantages and disadvantage of these mechanisms. While
we chiefly consider mechanisms to address memory safety,
we also discuss where these mechanisms may fail to address
aspects of memory security.

1 Introduction

Modern computing systems allow multiple processing enti-
ties, such as processes, tasks, or virtual machines, to share
hardware resources, such as time on the CPU, physical mem-
ory, and storage. In this paper, we focus on the different mech-
anisms of memory protection used to achieve isolation be-
tween different processing entities.

1.1 Scope
We consider mechanisms of memory protection, both
software-based and hardware-based, used to achieve mem-
ory safety, and secondarily, memory security in computing
systems (defined in the next section).

We include not only modern mechanisms and architectures,
but historical ones as well, noting their influence on both
modern systems and future ones. For example, while Intel
MPK [16] was introduced less than ten years ago, similar
architectural features have existed for decades longer in other
systems [50, 77]. Thus, it would be remiss to only focus on
modern systems.

1.2 Safety versus security
L. Pietre-Cambacedes et al. [72] (which uses the SEMA
framework [70]) separates security from safety by intent;

security addresses "risks originating from or exacerbated by
malicious intent", while safety addresses "accidental ones, i.e.
without malicious intent, but with potential impacts on the
system environment".

We define memory safety, describing a processing entity
(defined in the next section), as a state of being protected from
bugs and vulnerabilities dealing with direct memory accesses.
Mechanisms providing memory safety to a processing entity
should isolate that processing entity’s memory from direct
access of other processing entities. For example, two isolated
processes in a standard operating system cannot directly ac-
cess the memory of each other.

We note that mechanisms addressing memory safety may
not sufficient to guarantee memory security. To achieve true
memory security, a processing entity’s memory should be
completely inaccessible. If a system is vulnerable to side
channels (such as Spectre [45]) or disturbance errors (such as
rowhammer [42, 43]) that provide forms of indirect memory
access, then protection from direct memory access does not
achieve memory security. Still, even if a collection of mech-
anisms does not guarantee full memory security, the mecha-
nisms may be enough to guarantee memory safety without
the presence of malicious actors.

1.3 Processing entities

Traditional operating systems, such as Multics [94] and Unix
[74], have the notation of a process to describe an instance
of a program in execution. A process may be running, or if
paused, may be ready to run or blocked (if awaiting some
resource). Regardless of its status, a process uses multiple
resources, including memory, to function.

However, there are other supervisor software with alterna-
tive notations, or terms. Hypervisors for example schedule
virtual machines, which in turn schedule processes. Real-time
operating systems schedule tasks, which are analogous to pro-
cesses or threads. Furthermore, hardware modules outside of
the CPU can act similar to a process, using a portion of shared
memory or other resources. Thus, we generalize the idea of a

1



process as a processing entity.
We define a processing entity by two properties. First, a

processing entity must be an encapsulated (but not necessar-
ily independent) unit of execution on a computing system.
Secondly, a processing entity must use some subset of the
resources on a computing system; particularly, it must use
memory for our use case. That memory it uses "belongs" to
the processing entity, and may need to be protected by some
memory protection mechanisms.

Notice this definition of processing entity is highly inclu-
sive. This definition can be applied to processes, tasks, virtual
machines, supervisor and hypervisor software, as well as hard-
ware modules connected to main memory, and even threads.
The CPU or individual functions could meet this definition;
however, in this paper, by processing entity we usually mean
a process running in a standard operating systems.

Our definition allows for processing entities that can be
nested, such as a process in an operating system.

1.4 Protection models

A system uses one or more mechanisms of memory protection
to achieve a model of memory protection. A model of mem-
ory protection should distinguish between different types of
processing entities and how (or if) they should be isolated.

For example, in the traditional operating system model, the
memory used by each process needs to be protected from the
other processes on the system, and the operating system’s
memory needs to be protected from the processes it manages.
This model does not include protecting processes from the
operating system, but there are alternative models, based on
the idea of trusted execution environments (TEEs) that do.
For example, Intel SGX [17, 58] includes a processing en-
tity called an enclave, whose memory is protected from the
operating system.

Generally, we say memory is "protected" from a processing
entity when it can neither be read nor written to. However, it
is possible that for some models and some processing enti-
ties, only integrity needs to be guaranteed, not confidentiality.
Many systems may also include other nuances, such as mark-
ing pages executable or non-executable for further protection.

2 Physical memory

Physical memory is the location where primary storage or
main memory is physically stored, and is the only memory
directly accessible to the CPU. After possible layers of trans-
lation and protection, the instructions and other data of a
processing entity are ultimately served from physical mem-
ory.

2.1 Formalization
Conceptually, we may define physical memory as the mapping

M : Aval 7→V

where is a ∈ Aval is a valid address, and v ∈ V is a fixed-
sized value. Each address a is an unsigned integer of a fixed
size.

Modern architectures such as x86-64 define 64-bit ad-
dresses, although implementations usually support a smaller
physical address [16]. For the purposes of this paper, we
may define a to be a 64-bit integer. While Aval ⊆ [0,264]
in such modern systems, there are so far no systems where
Aval = [0,264]. We also note that Aval does not need to be con-
tiguous, that a CPU could allocate the addresses for physical
memory in a way that could have gaps.

We may define v ∈V to be an 8-bit "byte", as is ubiquitous
in modern systems, although there are historical systems that
use different sizes.

We may then define a physical read:

read : Apos 7→V ∪{e}

read(apos) =

{
M(apos) apos ∈ Aval

e apos /∈ Aval

where Apos is the set of possible memory address (Apos =
[0,264] in the 64-bit case), v ∈V is a value from memory (as
defined previously), and e is a constant "error" value (with
e /∈V ).

Now, we may define a physical write:

write : (Apos,V ) 7→ {∅,e}

write(apos,v) =

{
M(apos)← v,∅ apos ∈ Aval

e apos /∈ Aval

where ∅ is a constant "success" or "void" value (∅ /∈ V ).
In our definition, if the write is to a valid address, then the
memory at that location will be updated to the given value.

While we return a special value (e) as the response when
apos /∈ Aval, modern processors will typically issue an excep-
tion when an invalid address is used, which may update the
program counter to a set location, such as a handler.

The division of possible addresses (Apos) into valid ad-
dresses (Aval) and invalid addresses (Apos−Aval) is an impor-
tant one. While this division is currently between locations in
physical memory that exist or do not, various mechanisms of
memory protection will expand upon this model.

2.2 In practice
A combination of memory technologies in modern systems
forms a memory hierarchy [68], with faster, more expensive
memory technologies at the top, such as SRAM, and slower,

2



less expensive memory technologies at the bottom, such as
disk. DRAM (dynamic random access memory) is somewhere
in the middle, and is the modern technology for implement-
ing main memory. Values in DRAM cells are stored as a
charge in a capacitor, which must be periodically refreshed.
Modern DRAM is Synchronous DRAM (SDRAM), which
is clocked together with the CPU. The fastest versions of
DRAM/SDRAM is Double Data Rate (DDR) SDAM, which
commits data transfers on both the rising and falling edge of
the clock. The current version of DDR is DDR5.

DRAM is commercially released on small boards as dual in-
line memory modules (DIMMs). Historically, magnetic drums
were used for main memory, and eventually it was replaced
by magnetic-core memory.

Physical memory is often referred to as "main memory",
"core", or "main storage" (in z/Architecture [33]). However,
we only use the term physical memory for clarity.

3 Segmentation

With segmentation, each processing entity is associated with
a set of segments. Each segment has a base address and a
maximum offset. When memory is accessed by a processing
entity, a segment is provided with an unsigned offset, and the
physical address is computing by adding the offset to the base
address.

3.1 Formalization

We may define a segment s as a tuple of three properties as
follows:

s = ⟨abase,amax_off⟩

where abase (where abase ∈ Apos) is the base address, amax_off
(where amax_off is an unsigned integer of the address size,
such as 64 bits) is an offset of the base address, and p is the
permissions.

Each processing entity has a collection of n segments, from
s1 to sn. Now, recall our two core physical memory operations:

readp : Apos 7→V ∪{e}
writep : (Apos,V ) 7→ {∅,e}

We mark these with p to distinguish between physical and
other kinds of reads. With this in mind, we may then define a
segmented read as:

reads : (Aoff,S) 7→V ∪{e}

reads(aoff,s) =

{
readp(aoff +abase) aoff < amax_off

e aoff ≥ amax_off

Similarly, we may define a segmented write as

writes : (Aoff,S,V ) 7→ {∅,e}

writes(aoff,s,v) =

{
writep(aoff +abase,v) aoff < amax_off

e aoff ≥ amax_off

3.2 Permissions generalization
Segmentation in most implementations includes permissions.
We can expand our model by adding a permission field, p, to
a segment s.

s = ⟨abase,amax_off, p⟩

We define p as being either read-only (r) or read/write (w),
so p ∈ {r,w}. In many segmentation implementations, p is
extended with an execute (x) option, and all options can be
combined together into different configurations (such as r and
x, but no w), but we do not include this in our formalization.

Noting a segmented read is the same regardless of permis-
sions, we may then redefine segmented write:

writes : (Aoff,S,V ) 7→ {∅,e}

writes(aoff,s,v) =


writep(aoff +abase,v) aoff < amax_off

∧p = w

e otherwise

3.3 In practice
Segmentation has usually been combined with virtual mem-
ory, with segments layered atop a virtual address space.

Multics [76, 94] was an early operating system that took
advantage of hardware segments introduced by the GE 645
computer. In Multics, an address consists of a segment and
the offset from the segment, which is then translated into a
memory location. The concept of segmentation is also used
for storage, as segments and files are considered equivalent in
Multics.

The IBM System/370 [77] was an early system that in-
cluded a form of segmentation. Every storage (memory) ref-
erence required an access register (a segment), with the base
address stored in a register.

x86 includes six registers for segmentation, with one code
segment (CS), one data segment (DS), one stack segment
(SS), an "extra" segment (ES), and two "general" segments
(FS, GS) [16]. Most of these segments cannot be used out-
side of 32-bit mode, and as such, segmentation is rarely used
in practice in modern systems. The FS or GS registers are
however commonly used to access thread local storage (TLS),
which is set up by the operating system.

However, it has occasionally been, such as for Native Client
[104] which uses 32-bit mode and segmentation to sandbox

3



untrusted/third-party x86 binaries. Native Client protects its
runtime from arbitrary x86 code firstly by using an "outer
sandbox", which disallows certain instructions, such as sys-
tem calls, as well as paradigms like self-modifying code and
overlapping instructions. If an inappropriate instruction se-
quence is identified, Native Client will not execute the binary.
Then, Native Client uses an "inner sandbox" which uses x86
segments to protect the service runtime (which handles nec-
essary system calls, such as memory allocations and thread
management), as well as to intercept system calls if the outer
sandbox fails to contain them. With segmentation in place,
Native Client modules can only access the memory belonging
to the module, and cannot access the service runtime or other
portions of memory.

V. Karakostas and J. Gandhi reevaluated segmentation by
proposing Redundant Memory Mappings (RMM) [39]. RMM
adds a range table, which maps a contagious range of virtual
memory to contagious physical memory, with an associated
range TLB. They still maintain virtual memory paging struc-
tures and a (page-based) TLB, leading to redundancy in rep-
resentation, but allowing for flexibility. They find that, for
many applications, the range TLB has a much higher hit rate
than the page-based TLB due a greater TLB reach, avoiding
decreased latency from page walks.

4 Virtual memory

While modern virtual memory can encompass multiple tech-
niques and properties, we focus on the ability of hardware
to provide a virtual address space. This virtualized address
space may then exclude the memory contents of processing
entities to be protected. Thus, switching between different
processing entities may require switching between virtual
address spaces.

Typically, physical memory is divided into fixed-size pages,
and supervisor software provides a map of virtual pages to
physical pages which is enforced by the hardware during
address translation.

In most modern systems, particularly Unix-based systems,
virtual address spaces typically include both a process and
the operating system. The operating system is not protected
through the scope of the virtual address space, but through
other mechanisms typically associated with virtual memory,
such as the marking of individual pages as supervisor-only.

Theoretically, a computer system could enforce isolation
using purely virtual address space exclusion. Notably, the
KAISER 1 [23] patch to x86-64 Linux implements kernel
address isolation, moving most of the kernel out of each pro-
cess’s virtual address spaces to prevent side-channel attacks
such as Meltdown [55]. However, KAISER still requires some

1KAISER stands for "Kernel Address Isolation to have Side-channels
Efficiently Removed. Nowadays, this feature is referred to as KPTI ("Kernel
Page Table Isolation"), since KAISER does not efficiently remove all transient
execution attacks, such as Spectre [45].

minimum of pages to be mapped in the process address space
due to limitations in x86-64 and Linux. For example, the
interrupt descriptor table (IDT) must be mapped for x86 to
correctly handle context switches.

4.1 Formalization
We define virtual memory as the mapping

Mv : Av 7→ Apos

where av ∈ AV is a valid virtual address, and apos is a possible
physical address. We may then define a virtualized read as:

readv : Apos 7→V ∪{e}

readv(apos) =

{
readp(Mv(apos)) apos ∈ Av

e apos /∈ Av

Similarly, we may defined a virtualized write as:

writev : (Apos,V ) 7→ {∅,e}

writev(apos,v) =

{
writep(Mv(apos),v) apos ∈ Av

e apos /∈ Av

4.2 Generalization
Modern CPUs often support second level address translation,
which nests virtual address spaces. We can generalize our
model by defining up to n virtual memory mappings:

Mv1 : Av1 7→ Apos

...

Mvn : Avn 7→ Apos

We may then redefine a virtualized read and write:

readv(apos) =

{
readp(Mv1 ◦ ...◦Mvn(apos)) apos ∈ Av

e apos /∈ Av

writev(apos,v) =

{
writep(Mv1 ◦ ...◦Mvn(apos),v) apos ∈ Av

e apos /∈ Av

4.3 In practice
In x86/x86-64, virtual memory is mapped using a hierarchical
paging structural [16], called a page table. Memory is divided
into pages, usually 4096 bytes in size, and each address is
divided into a page number 2 and an offset. A portion of the
page number, initially the upper bits, is used to index each
paging structure. The initial paging structure is stored in a

2Intel uses the term page number to refer to the upper bits of a virtual
address and the term page frame to refer to the upper bits of a physical
address. However, we use the term page number, which has often been to
used to describe upper bits of both.

4



special register (CR3), and each entry in a paging structure
contains either the next paging structure or the physical page
number, which can combined with the offset to obtain a physi-
cal address. If at some point the entry is not marked as present,
a page fault is generated, transferring control to supervisor
software.

Because translating a virtual memory address can require
many memory accesses to iterate through the page table, map-
pings of virtual page numbers to physical page frames are
cached in a CPU structure called the translation lookaside
buffer, or TLB. Switching between virtual address address
spaces may require the TLB to be flushed; however, x86-86
allows for a 12-bit process-context identifier (PCID) to be set,
which can be used to distinguish between different processing
entities using different virtual address spaces. A TLB can
then be indexed by both the present PCID and the virtual page
number, allowing address translations with different PCIDs
to remain in the TLB.

In 32-bit MIPS [37], the TLB is completely managed by
software. Virtual page to physical mappings must be supplied
by supervisor instructions; it is up to the supervisor to create
its own paging structure, or use an alternative structure, to
track mappings that do not fit in the TLB. Similar to x86,
TLB entries can be marked with an address-space identifier
(ASID), and there is an 8-bit register3 for the current ASID.

In RISC-V [95], address translation is handled similarly to
x86. However, RISC-V provides configurably sized virtual
memory systems; with a greater virtual address space, more
can be represented, but address translation requires more re-
sources (more memory used for page tables, latency of traver-
sals, microarchitectural size of translation hardware). 64-bit
RISC-V has 3 virtual memory systems to choose from: Sv39
(39-bits, allowing a 512 GiB virtual address space), Sv48
(48-bits, 256 TiB), and Sv57 (57-bits, 128 PiB). A RISC-
V implementation must implement at least Sv39, and must
implement Sv48 if Sv57 is implemented to be backwards
compatible with software assuming a smaller version.

Virtual memory is referred to as "virtual storage" in z/Archi-
tecture [33]. A virtual address is converted to a real address
using dynamic address translation (DAT), and then that real
address is converted to an absolute (physical) address using
prefixing. Dynamic address translation is similar in mechanics
to x86 virtual address translation. Prefixing reassigns the real
memory range of 0 to 8191 to a different block in physical
memory. This provides a private area of storage for each CPU
core, which is mainly used for interrupts.

Virtual memory has a non-negligible performance cost. H.
Choi et al. [15] benchmarked Linux and uClinux (Linux with
MMU use disabled) on ARM and found uClinux to be sig-
nificantly faster at context switching. However, the analysis
is severely out of date (2005). Singularity [1, 30], discussed
in greater detail later, found software-based process isola-

3This is describing the R6000 specifically. The register is actually is 32
bits, but the upper 24 bits are reserved.

tion to be faster on microbenchmarks, especially on those
relating to interprocess communication (IPC). Similarly, J.
Liedtke [53, 54] found system calls and virtual address space
switching to be very expensive for IPC, together taking up
60% of the cycles used for an IPC message to be sent, with an
address space switch taking up about 20%. While updating
the root of the page table can be a small cost, if the TLB
must be flushed, then switching between processes is a mas-
sive overhead. These overheads are especially bothersome on
microkernels, which heavily rely on IPC.

4.4 Beyond isolation

In modern systems, virtual memory has greater application
than being an isolation primitive. A contiguous virtual address
space can obfuscate fragmentation in physical memory, as
well as can map objects not present or only partial present in
physical memory, such as contents of disk. Modern operating
systems use memory management techniques such as demand
paging, which can exclude portions of memory unlikely to
be used or used often, but bring them into memory upon a
page fault. This leads to less pressure on physical memory.
Swapping (moving pages in and out of physical memory, to
and from secondary storage) can even allow for systems to
use more memory than they physically have.

One of the earliest systems to introduce a form of virtual
memory was the Atlas system [40, 41]. Atlas used its one-
level store (quasi-virtual memory) with the goal of presenting
processes with a greater amount of memory than was available
in core memory. Atlas had 16,000 words in core memory,
but 96,000 words in drum, which is slower to access (with
drum accesses taking 6 milliseconds, and core taking a few
microseconds).

The one-level store allowed for the reassignment of phys-
ical addresses. For each page in memory, there was a page
address register. Upon a memory access, the memory loca-
tion was compared to the page address register, and if they
are not equal, a "non-equivalence" interrupt was generated,
which would swap a sector from drum to memory. In an early
application of a page replacement algorithm, Atlas also in-
cluded a "learning program", which would swap out pages
unused after a certain period of inactivity. One-level stores
blur the distinction between ephemeral and persistent applica-
tion state; Auora [84] is a modern system which reevaluates
the one-level store.

Opal [8], a research operating system, uses virtual memory
for these advantages, but it uses a single virtual address space
are page-groups for protection instead of isolated virtual ad-
dress spaces. Opal is built atop HP’s Precision Architecture
(or PA-RISC) [50], which encourages a global virtual address
space. With a single address space, sharing is simplified, since
virtual addresses are global, and the penalty of address space
switching is removed.

In practice, PA-RISC handles virtual memory similarly to

5



x86. However, because the virtual address space is global, and
furthermore, PA-RISC disallows address aliasing, PA-RISC
can optimize its microarchitecture by indexing all levels of
cache virtually. This allows the caches to be accessed in
parallel with the TLB.

5 Group protection

We generalize a series of protection mechanisms, such as
memory protection keys and page groups (or page-group pro-
tection) into group protection. Simply, each of some unit of
memory (generally a page, but it can be more or less), is as-
signed to a group. Each processing entity has access to one or
more groups; generally, the supervisor has access to all.

5.1 Formalization
We define an address’s group through the map

Ga : Apos 7→ G

where apos ∈ Apos is a possible address, and g∈G is the group
associated with that address. We may define the group g as a
fixed-size unsigned integer. Then, we may define the groups
that a processing context has through the map

Gp : P 7→ P (G)

where p ∈ P is a processing entity, and gs ∈ P (G) is some
subset of G (that is, gs ⊆ G).

Now, we may define a group-respecting read as

readg : (Apos,P) 7→V ∪{e}

readg(apos, p) =

{
readp(apos) Ga(apos) ∈ Gp(p)
e Ga(apos) /∈ Gp(p)

Similarly, we may define a group-respecting write as

writeg : (Apos,P,V ) 7→ {∅,e}

writeg(apos, p,v) =

{
writep(apos,v) Ga(apos) ∈ Gp(p)
e Ga(apos) /∈ Gp(p)

5.2 In practice
In PA-RISC [14, 50], each page entry has an access identi-
fier (AID) which contains a page-group number plus a write-
disable bit. Each process has four access identifier which can
claim up to 4 groups. With the write-disable bit, an AID can
give read access to page but no write access. Two AIDs can
share a page-group, but one can be write-disabled, with one
write-enabled. This can allow for say, a single writing process
with multiple readers.

In a simple application of page-based groups, x86 annotates
page table entries with a single bit to distinguish between a

supervisor-mode address and a user-mode address [16], pro-
viding two effective groups. In a virtual address space, all
user-mode addresses are accessible, but supervisor-mode ad-
dresses are only accessible when the CPU is in a privileged
mode (ring ≤ 0). In modern operating systems, this allows
a supervisor and a process to share the same virtual address
space safely (absent vulnerabilities such as Meltdown [55],
discussed later), and thus lower the overhead of context switch-
ing.

Similar to x86, Atlas annotates page address registers with
a lockout bit, to prevent processes from accessing supervisor
memory and pages not available to it [41]. Sometimes, a block
of information may be locked out if a supervisor operation on
that information is not yet complete.

Recent versions of x86-64 introduce Memory Protection
Keys (Intel MPK), which uses 4 bits of each page table en-
try to store a protection key [16]. A 32-bit register (PKRU,
protection-key rights for user pages) stores 2 bits for each
protection key. When MPK is enabled, the PKRU sets read
and write permissions for each page, which can limit access
to pages in usermode. Even if a page is mapped virtually
and lacks a kernel bit, if the page entry uses a key with ac-
cess disabled in the PKRU, the page cannot be accessed in
user mode. While the number of keys is limited to 16, they
can be virtualized in software fairly efficiently [24, 67]. The
PKRU register can be modified from userspace, limiting its
ability to only providing some extra isolation between trusted
components, such as for helping sandbox JIT-compiled code.

In z/Architecture [33], pages can similarly be protected
with a 4-bit key, which was introduced in the IBM Sys-
tem/360 [77]. A non-supervisor processing entity only has
one key at a time, and can only access pages marked with that
key. However, one key, the zero key, can be accessed by any
processing entity. Operating systems built on System/370 use
a key to protect control information inside of a virtual address
space.

Group protection has usually been combined with virtual
memory, with each page being labeled with a group inside of a
TLB entry. However, this need not be the case; E. Koldinger et
al. [14] suggest separate address translations for virtualization
and for protection, with a protection lookaside buffer (PLB) to
store protection information. In Opal, a single address space
operating system, the virtual address space is global, but the
protection is not; that is, a different translation structure for
protection is needed for each process, but only one transla-
tion structure is needed for virtual memory. A PLB can also
be accessed in parallel with a TLB, if the PLB is indexed
virtually.

Separate TLB and PLB structures can also allow for differ-
ences in granularity; it is possible that for certain workloads,
large pages may be preferred to optimize TLB use, but fine-
grained protection could be preferred. On the other hand,
larger protection pages could be useful; segments of memory
such as the stack and code span several virtual pages, but

6



have the same protection. Similar to how modern TLBs can
support multiple page sizes, there is no reason why a PLB
couldn’t either.

6 Analytic protection

We generalize a few software-based memory protection mech-
anisms as analytic protection. Before a processing entity is
spawned and executed, the executable format of a processing
entity is either analyzed to ensure it does not access memory
outside of itself, or that the executable format is limited to
a language or format that has been previously analyzed to
follow memory safety (or at least, to not interfere with the
other processing entities on a system).

These techniques are all software-based, although the mem-
ory safety features of capability architectures (and their deriva-
tives) are not dissimilar.

6.1 Formalization
First, we define a pchild ∈ P as a child processing entity, and
a pparent ∈ P as a parent processing entity. The pchild is em-
bedded in the address space of pparent, and pchild is spawned
by pparent; the canonical example of each is a process and an
an operating system, but there are many more examples, such
as a JS script running in a thread of a web browser, or a Java
process running in the Java Virtual Machine (JVM).

We can then describe an approval function as

approval : P 7→ ({∅,e},P)

where, given a processing entity loaded into memory ppre ∈
P, the approval operation either approves (returning ∅) or
rejects the process (returning e), and then returns a translated
process entity ppost ∈ P.

Translation may be a no-op, depending on implementation.

6.2 In practice
Singularity [1, 21, 30] uses a single address space with soft-
ware isolated processes (SIPs), as opposed to hardware iso-
lated processes (HIPs). Singularity SIPs must be compiled
into an intermediate language (MSIL), which is statically ver-
ified on load time to ensure that that the SIP cannot access
memory outside of itself, and that it does not use any privi-
leged instructions. The latter property allows SIPs to run in a
privileged CPU level (ring 0 in x86). Singularity can be con-
figured to use HIPS, but running SIPs without virtual memory
and in ring 0 significantly removes the overhead caused by
switching privilege modes and virtual address spaces.

SIPs cannot share pages or other memory locations directly.
However, Singularity supports and facilitates contract-based
channels that can be made between SIPs for zero-copy in-
terprocess communication. Channels are bi-directional, and

are implemented as a lossless, in-order queue of messages.
Channel contracts are specified in Sinq# and are statically
verified.

Tock [51], an embedded operating system, has hardware-
isolated processes, but also adds capsules. Capsules are em-
bedded in the kernel and must be written in Rust, to ensure
memory and type safety. Similarly, RedLeaf [61] is another
Rust-based operating system, similar to Singularity, where
programs must be written in Rust.

eBPF (extended Berkeley Packet Filters) [20] is a feature
of Windows, Linux, and other Unix-based operating systems
based on BPF (Berkeley Packet Filter, or BSD Packet Filter
originally) [57]. BPF was originally a tool built into BSD
that filters out packets using a given small filter program,
then forwarding the results to a usermode process for further
processing. Over time, BPF was expanded to allow for more
functionality and complexity in the filter, and to respond to
events other than network packets, such as system calls, kernel
tracepoints, and disk communication.

eBPF programs run in a privileged context (such as ring
0 in x86) and fully in the kernel’s section of memory. After
being loaded, an eBPF program then undergoes verification
to ensure its safety. The verifier will check if the process
attempting to use eBPF has those permissions (as of recently,
only root can use eBPF per default), that the eBPF program
does not use uninitialized memory or access memory out of
bonds, that the eBPF program is under a certain size, and
that programs have a finite complexity and always run to
completion (eBPF programs are not Turing-complete). Then,
the JIT compiler converts eBPF bytecode into machine code.

eBPF programs can use eBPF maps to collect and store
information. Since eBPF programs are event-driven and only
run for a small amount of time, eBPF maps are essentially for
storing state. eBPF cannot access kernel methods or structures
directly, and thus, there is a standard API providing eBPF
helper calls. There are helper calls for generating random
numbers, accessing or updating eBPF maps, reading from a
trace, or forwarding results. eBPF programs can call other
eBPF programs, but only as a tail call, and the composite
eBPF program cannot be cyclical.

Portable Native Client [18], or PNaCl, is a successor to
Native Client [104]. Instead of using x86 segmentation, it
accepts a binary made of LLVM bitcode, an intermediate
format, and performs static analysis on it before compiling it
to a native format, such as x86-32, x86-64, or ARM. This is
not dissimilar to WebAssembly [25], which uses an efficient
intermediate format crafted with sandboxing in mind. By
design, a WebAssembly module can only modify its own
memory, even if the module is sharing an address space.

7 Capabilities

With capability-based addressing, each processing entity is
associated with a set of capabilities. Each valid capability

7



describes a memory region and associated permissions; often,
capabilities describe a single object, but they can describe
larger structures too, such as the stack or all of addressable
memory. Similar to segmentation, memory accesses are done
on a capability and offset rather than an arbitrary address,
which is then translated. New capabilities can only be derived
from an existing capability and cannot exceed the scope (in
addressing or permissions) of the capability that it is derived
from.

The idea of capabilities is often used outside of memory
protection in security, such as by file systems and distributed
systems.

7.1 Formalization
A capability, in essence, is not dissimilar from a segment.
We may reuse our generalization of a segment to define a
capability c, but with one extra field:

c = ⟨abase,amax_off, p, t⟩

where t is the validity tag, a boolean value.
And then we may define a capability-based read similarly:

readc : (Aoff,C) 7→V ∪{e}

readc(aoff,c) =


readp(aoff +abase) ao f f < amax_off

∧t

e otherwise

And a capability-based write similarly:

writec : (Aoff,C,V ) 7→ {∅,e}

writec(aoff,c,v) =


writep(aoff +abase,v) aoff < amax_off

∧p = w∧ t

e otherwise

One key difference between segmentation and capabilities
is the ability to easily create new capabilities from existing
ones. Thus, we can define an operation for creating capabili-
ties as follows:

create : (C,Abase,Ao f f ) 7→C∪{e}
create(c,abasenew ,amax_offnew) =



⟨abasenew ,amax_offnew , p, t⟩ abase ≤ abasenew

∧t
∧abasenew < abase +amax_off

∧amax_offnew ≤ abase +amax_off

e otherwise

7.2 In practice

CHERI (Capability Hardware Enhanced RISC Instructions)
[97, 98, 102] is an hybrid capability ISA extension, extending
MIPS (originally), ARM, and RISC-V, with a "sketch" for
x86. CHERI is designed to be incremental with existing ar-
chitectures and can be mixed with conventional MMU-based
protections. CHERI-ARM is available as an experimental
commercial product as ARM Morello [96].

CHERI capabilities are 128-bit on 64-bit platforms, and
64-bit on 32-bit platforms4, plus an extra bit for a validity
tag [97, 101]. The 128 bits are split into a 64-bit address,
and 64 bits of metadata, including a bounds, object type, and
permissions. The address can either be a virtual or physical
address; it is interpreted with respect to the current addressing
mode. The bounds is relative to the address and compressed.
The bounds are represented using a float point representation5

, allowing for high precision for small objects, but lower preci-
sion for larger objects. The object type is -1 if the capability is
"unsealed" (not associated with an object type); otherwise it is
compared with during capability operations. The permissions
describe how the capability can be used, with standard read,
write, and executable permissions, but also permissions to
limit capability propagation and some for software. Lastly,
the validity tag determines if a capability can be used or not;
if invalid, the capability cannot be used, though its fields can
be extracted if needed.

Capabilities are stored either in registers, which are dou-
bled in size to fit them, plus a validity tag, or they are stored
in memory. Capabilities stored in memory must be aligned,
such that each 16 bytes of memory is tagged; the validity tags
for in-memory capabilities are also stored in memory in a pro-
tected region called a hierarchical tag table [36]. Originally,
a flat table was used, but the hierarchical tag table, essentially
a two-level table, saves space in memory. Any direct write to
a memory location or register will invalidate the tag, ensur-
ing capabilities can only be modified with capability-specific
instructions.

Capabilities must follow three properties. The first is prove-
nance validity, that capabilities can be constructed from in-
structions using other valid capabilities. The second is capa-
bility monotonicity, that new capabilities cannot exceed the
permissions and bounds of the capability it was derived from.
The last is reachable capability monotonicity, that during ex-
ecution, all capabilities accessible to the current processing
entity cannot increase. A formal model of the CHERI ISA
(specifically CHERI-MIPS) has been formally proven to fol-
low these properties [62].

CHERI was inspired by M-Machine [12], a pure capability
machine, adding 64-bit guarded pointers. Each pointer con-
tains 54 bits for the (virtual) address, 6 bits for a segment,

4It was 256 bits originally for 64-bit platforms, but compressed over time
for performance (see [101]).

5I don’t mean IEEE 754; see [101] for details.

8



4 for the permission bits, and an additional 1 bit for the tag.
Guarded pointers cannot be forged, which would modify the
tag bit. Another historical capability system is the IBM Sys-
tem/38 [29]. In System/38, each word has 40 bits, with 32-bits
for data, 7 ECC (error correcting code) bits, and 1 tag. Point-
ers are composed of 4 words. Similarly, the tag bits are not
directly addressable.

8 Trusted Execution Environments (TEEs)

A trusted execution environment (TEE) is a processing envi-
ronment that guarantees the integrity, authenticity, and con-
fidentiality of the executing code and its state [75]. Most
importantly, code executing outside the TEE should not be
able to modify nor directly inspect the contents of that TEE,
including hypervisor and supervisor software.

The most common TEE abstraction is an enclave, which is
a protected area of physical memory containing both the code
and data of an enclave application. After initialization, en-
clave memory can only be accessed and modified from within
the enclave itself, and even privileged components cannot ac-
cess the enclave memory. Another common alternative TEE
model, the "virtual machine" model, isolates individual virtual
machines, including a guest operating system and processes,
rather than just a program or portion of a program.

In order to prove authenticity, TEEs typically provide prim-
itives for attestation. Upon enclave creation, the initial mem-
ory contents of the enclave are cryptographically measured.
Then, the authenticity of the enclave can be verified to other
applications on the system, or potentially over the network to
a remote party. If the initial state is tampered with, then the
measurement will not match, and the enclave application will
be known to be untrusted.

8.1 Formalization
TEEs are typically implemented as another layer of mem-
ory protection and can be modeled differently depending on
implementation. Most follow something similar to group pro-
tection.

8.2 In practice
Intel Software Guard Extension (SGX) is an extension to x86,
and is one of the first major TEE implementations and one of
the most widely deployed [58] [17], being employed by cloud
providers such as Alibaba [2, 3], IBM [31, 32], and Microsoft
[59, 106]. Besides from its use in the cloud, SGX has been
used as a foundation of trust for blockchain networks, such
as the Secret Network, well as for digital rights management,
such as by CyberLink PowerDVD for blu-ray [91].

SGX follows the enclave model, with enclaves created
and managed through special instructions. Enclave pages are
stored in a physical memory area the Enclave Page Cache

(EPC). The EPC is part of the Processor Reserved Memory
(PRM), a contiguous range of physical memory, which also
includes other data structures storing metadata like the En-
clave Page Cache Map (EPCM), the SGX Enclave Control
Store (SECS), and the Thread Control Structure (TCS). To
protect from attacks targeting DRAM modules, the EPC is
cryptographically encrypted using Intel’s Memory Encryption
Engine (MEE). The MEE encrypts enclave pages whenever
they leave the CPU, and decrypts them when entering the
CPU.

Because SGX requires special instructions to be able to use,
applications not engineered specifically for SGX usually use
a library operating system or a similar kind of compatibility
layer, such as Gramine [83], Scone [6], Haven [9], and Occlum
[81]. Theoretically, a library operating system can be ported
to other host OSs and TEEs.

In response to the complexity of SGX, newer TEE im-
plementations follow a "virtual machine" model, like AMD
SEV-SNP [4] and Intel TDX [34], where virtual machines are
isolated from the hypervisor and from other virtual machines,
instead of isolating individual applications or parts of appli-
cations. While no modification needs to be done to support
applications running on an isolated virtual machine, a greater
amount of code (the guest OS) has to be trusted.

Keystone [49] is an open source, software-based RISC-V
TEE. Keystone utilizes physical memory protection (PMP),
a key feature of the RISC-V privileged instruction set, that
allows Keystone to run on unmodified RISC-V hardware. The
core component of Keystone is its security monitor (SM),
which is implemented in the M-mode privilege mode, and is
more privileged than the untrusted operating system which
runs in S-mode (the equivalent of ring 0).

Keystone’s security monitor uses PMP to protect sections
of physical memory; each enclave uses a PMP entry, and the
security monitor uses two. Keystone’s use of PMP is both
a major strength and a major weakness in that, while using
PMP allows Keystone to run on unmodified hardware, there
is an architectural limit of up to 64 PMP entities, with many
RISC-V systems only having 8 or 16 entries.

Unique to Keystone is its runtime (RT) component, which
serves as something like a library operating system, managing
system calls and memory management. The runtime runs in
S-mode. Keystone also includes an SDK for easily creating
and launching enclaves.

Keystone has mainly been used in academia to prototype
experimental TEE designs; one is Elasticlave [105], a TEE
model allowing sharing of memory between enclaves. While
there are techniques for enclaves to share data using more
rigid TEE models, Elasticlave has significantly less overhead
costs. Cerberus [48] is a similar TEE model allowing enclave
memory sharing, but is formally verified. Keystone has also
been used to explore hardware-accelerated for TEE booting
[28], TEE implementation on real-time systems [82], and
composite enclaves [78], with enclaves composed of multiple

9



distributed unit enclaves.
ARM TrustZone [71] is an older but widely deployed

TEE/security solution. TrustZone divides memory and other
resources into a secure world and a normal world, with soft-
ware in the normal world not able to access resources of the
secure world. The OS runs in the normal world, isolating soft-
ware running in the secure world. Newer ARM processors
include ARM CCA [5], which adds a realm world. The realm
world is composed of isolated realms, which are similar to
SGX enclaves.

Graviton [93] and Cure [7] are two TEE designs exploring
protection from hardware outside the CPU; Graviton explores
an enhanced GPU with TEE support, while Cure can bind
peripherals to specific enclaves. CHERI-TrEE [92] adds TEE
support to CHERI [98], a capability architecture. Like CHERI,
the design of CHERI-TrEE is formalized in Sail, and imple-
mented on both an open source RISC-V processor and and
on ARM Morello.

9 Exploits against memory security

Even if the mechanisms used to ensure memory safety are
sound, microarchitectural design of CPUs and of memory
modules can lead to exploitable vulnerabilities, as can defects
in programs, libraries, and supervisor software, which erode
memory security. We discuss such vulnerabilities here.

9.1 Bugs

Programs that fail to check bounds when reading from or writ-
ing data into an array can allow for vulnerabilities. Writing
data beyond an array on the stack (a buffer overflow) can be
exploited to "smash the stack" [63]. Typical exploits override
the return pointer on the stack, and insert code which is then
used (code injection).

In modern systems, the stack is not executable, so code
injection is not possible. Still, arbitrary code execution is
basically possible with a technique called return-oriented
programming [80]. A large enough code base can provide
the appropriate gadgets (useful, short instruction sequences)
for arbitrary execution, including for shellcode (turning a
privileged process into a shell to execute arbitrary commands).

Safe programming languages such as Java and Go include
runtime bounds checking into the language, but these features
have overhead and are not included in languages such as C.
Even though these kinds of memory vulnerabilities have been
well known and well studied for decades, applications are still
frequently vulnerable to them. A buffer over-read vulnerabil-
ity, that is, failing to check bounds on an array read, led to
Heartbleed [19] in 2014, one of the largest vulnerabilities in
recent history with 24-55% of top HTTPS websites affected.

1 char array[256 * 0x1000];
2

3 void main(){
4 // Flush entirety of array out of cache.
5 clflush_all(array);
6

7 // Perform Meltdown with arbitrary kernel
memory.

8 char *pt = (char *)0xDEADBEEF;
9 meltdown(pt);

10

11 // Note that the exception generated on line
19 must be handled such that the next
statement is executed.

12 // Calculate which page of array is accessible
in the minimum amount of time.

13 // The page index will be the secret value.
14 char data = minimum_access_time(array);
15 }
16

17 void meltdown(char *pt){
18 // Direct access of data. Causes exception.
19 char data = *pt;
20 // Transiently access data , bringing the data -

th page into cache
21 array[data * 0x1000] = 1;
22 }

Figure 1: Meltdown psuedocode to extract a single byte
(at virtual address 0xDEADBEEF) from memory using
Flush+Reload.

9.2 Transient execution attacks
Meltdown [55] and Spectre [45] are the canonical examples
of transient execution attacks. Modern CPUs use out-of-order
execution, where instructions are executed speculatively. The
CPU may execute instructions incorrectly if it mispredicts a
branch or memory load; these incorrectly instructions exe-
cuted transiently must be rolled back by the CPU such that
the architecture (registers, memory) is not affected. Although
the architecture cannot be affected by transiently executed
instructions, microarchitectural structures such as the cache
can be. The change in microarchitectural state can be trans-
mitted via a covert channel such as Flush+Reload [103] or
Prime+Probe [66].

Meltdown allows for the read of arbitrary protected (gener-
ally kernel) locations mapped in virtual memory. The attack
directly accesses an arbitrary kernel memory location, and
transiently transmits the value via cache. By the time an ex-
ception is generated from the invalid memory reference, the
microarchitectural state is already modified in a measurable
way. Psuedocode for Meltdown is provided in Figure 1.

Spectre is similar to Meltdown, but instead of directly ac-
cessing protected data, Spectre induces a victim (generally
the kernel) to speculatively transmit secrets. This is done ei-
ther through the speculative execution of a conditional branch
(Spectre V1), induced through mistraining of the branch pre-
dictor, or through speculative execution of a return branch

10



(Spectre V2), through mistraining the Branch Target Buffer
(BTB). Unlike Meltdown, Spectre functions on more proces-
sors (including AMD and ARM processors) and cannot be
prevented by removing sensitive kernel information from an
attacker’s address space (i.e. KAISER [23]). Furthermore, a
Spectre attack can occur from a sandboxed environment like
JavaScript or eBPF.

Foreshadow-VMM, part of Foreshadow-NG [99], targets
the hypervisor/co-residential virtual machines from a mali-
cious virtual machine. An attacker can completely control
guest physical addresses to transiently access arbitrary phys-
ical memory across the hypervisor boundary. Foreshadow-
VMM claims to be "the first transient execution attack that
fully escapes the virtual memory sandbox".

Microarchitectural data sampling (MDS) vulnerabilities
leaks data across address spaces and other boundaries through
speculatively reading of microarchitectural structures. This
includes abusing the line-fill buffer (RIDL [89], ZombieLoad
[79]), load port (RIDL), and the store buffer (Fallout [11]).
While these attacks rely on an attacker to located on the same
core as the victim, attacks like CrossTalk [73] can occur across
the CPU by sampling the shared staging buffer.

While there are patchwork solutions for individual vulnera-
bilities, the root cause, speculation leaking through microar-
chitectural state, is not fully solved. Future CPUs must close
microarchitectural covert and side channels to achieve true
memory security. One research solution closing cache covert
channels is DAWG [44], which dynamically allocates cache
ways to processing entities, fully isolating cache hits and al-
lowing for redundancy. Further research needs to be done to
balance security with performance in real-world systems.

9.3 Rowhammer and physical attacks

Rowhammer [42,43] is a read-disturb vulnerability in DRAM
chips. At increased density, DRAM cells can cause distur-
bance errors in neighboring cells; more specifically, activation
of a row in DRAM can drain the capacity of adjacent rows,
and with enough activations (hammering), bit flips can be
triggered in victim cells. Moreover, the bits that flip due to
rowhammer are repeatedly, predictably flipable. The bitflip
rate can be improved greatly through using a double-sided
rowhammer (attacking a victim row by repeatedly hammering
both its adjacent rows) and a hammering pattern tailored to
the particular DIMM.

Similar to the double-sided rowhammer technique is the
"half-double" technique [46]. While rowhammer attacks usu-
ally focus on flipping bits in an adjacent row, it is possible
for an hammered row to flip bits in rows at a greater dis-
tance. The farther an aggressor row is from a victim row, the
less effective rowhammer is, but this can bypass certain de-
fenses that only counter nearby rowhammering. Temperature
is also a factor that can improve rowhammer capabilities [65];
rowhammer is more effective as temperature increases for

Row activation (A0) Secret (S)
Unused Sampling (A1)

Row activation (A2) Secret (S)

Figure 2: RAMBleed memory layout. Each column is a page,
and A0-A2 belong to the attacker, while S is the victim page.

most DRAM chips, although there are exceptions. The cor-
relation between temperature and rowhammer effectiveness
is actually strong enough where, given the ability to perform
unprivileged remote execution, rowhammer can be used to
spy on the temperature on DRAM [64], with an error less than
±2.5◦C.

Using rowhammer for practical attacks requires an intimate
knowledge of the mapping of physical memory to channels,
DIMM modules, ranks, banks, bank groups, and then rows and
columns; two addresses can only been physically adjacent if
they use the same channel, DIMM, rank, and bank. Tools such
as DRAMA [69] have been developed to reverse engineer this
mapping for Intel CPUs; these mapping are determined by
the memory controller on the CPU, and different CPUs may
implement mappings differently. For example, DRAMA does
not work out of the box for AMD Zen [35] and had to be
ported to achieve a comparable rowhammer success rate to
Intel’s CPUs.

RAMBleed [47] is a side channel attack that uses rowham-
mer as a primitive against confidentiality, rather than just in-
tegrity. The attacker must carefully align memory to achieve
a layout like in Figure 2, with secret data sharing the same
row as an attacker page. By hammering the attacker pages
(A0, A2), bitflips can be triggered in the attacker’s sampling
page (A1).

With a double-sided rowhammer, a 0-1-0 rowhammer con-
figuration, where the victim bit is charged and the hammering
bits are not, is likely to trigger a bitflip to a zeroed state (0-
0-0), while a 0-0-0 configuration will not trigger a bitflip in
the victim bit. Similarly, a 1-0-1 configuration, with an un-
charged victim bit and charged hammering bit, is likely to
trigger a bitflip to a fully charged state (1-1-1), while a 1-1-1
will again not trigger a bitflip in the victim bit. RAMBleed
uses this observation to its advantage, by examining the con-
tents of the sampling page (A1) after rowhammering its row
activation pages (A0, A2) using both patterns. Not all DRAM
cells are flippable, so this must be repeated with different
rows and columns to find all bits. Ideally, if the target bits are
data-dependent, then some can be interfered.

RowPress [56] is a similar read-disturb vulnerability to
rowhammer in DRAM chips, but is less understood. Row-
Press keeps a DRAM row open for an extended period of time,
which can cause bit flips in adjacent rows. Few of the cells
(fewer than 0.013%) affected by RowPress are also affected
by rowhammer, suggesting that the root of the vulnerability is
an entirely different physical phenomena. Similar to rowham-

11



mer, the effects of RowPress are stronger as DRAM modules
scale to smaller node sizes, but dissimilarly, RowPress is less
effective with greater temperature, and single-sided RowPress
is more efficient than double-sided RowPress in some cases.

Cold boot attacks [26] are a physical attack against DRAM.
Although the contents of DRAM is lost over time when power
is lost, the contents are not immediately lost. Although the
residual memory is lost pretty quickly, J.A. Halderman et
al. found that it was possible to cool the physical DRAM to
−50◦C using canned air duster products, significantly preserv-
ing residual memory. After a minute, 99.9% of the bits were
recovered correctly in the DRAM modules tested.

9.4 Against TEEs

Trusted execution environments (TEEs) theoretically provide
greater confidentiality and integrity for enclave processing
entities, but their stronger threat model gives a greater toolbox
(full kernel control) to hypothetical attackers.

Foreshadow [85] was the first attack against Intel SGX
to allow arbitrary reading of enclave memory. Foreshadow
unmaps enclave pages and then essentially uses the same
flow as Meltdown, except relying on the data to be stored
to be stored in the L1D cache. There are a number of tricks
to keep or put enclave data into L1, especially with kernel
privileges; in particular, the eldu instruction, used to swap in
an enclave page, moves the entirety of an unencrypted page to
L1, giving a privileged attacker a powerful primitive that can
read the entire enclave memory space whenever desired. A
privileged attacker can also single-step an enclave processing
entity (using SGX-Step [87]), and access register values by
targeting the SSA, where registers are stored after an enclave
exit.

With a highly effective read primitive, Foreshadow also
targeted Intel’s architectural enclaves, which are built-in en-
claves used to implement functionality too complicated to
implement in microcode and are trusted. Foreshadow was
able to successfully attack the Intel Launch Engine, extracting
the launch key. Additionally, Foreshadow was able to extract
the report key from the Intel Quoting Enclave, allowing for
the signature of fake attestation quotes. While Foreshadow
is chiefly an attack against confidentiality, undermining the
Quoting Enclaves undermines the integrity guarantees for all
SGX-based remote computation.

LVI (load value inject) [86] is a "reverse Meltdown" attack,
which injects a victim with attacker-controlled data and then
transiently forwards a secret to a gadget, following a simi-
lar "confused deputy" [27] style of attack similar to Spectre.
In LVI, a microarchitectural buffer is filled with a malicious
value, which is speculatively loaded from the victim, and then
the injected value is used transiently by gadgets that leave a
measurable microarchitectural trace. While the LVI method-
ology is not specific to Intel SGX, it is difficult to execute
LVI attacks in a weaker threat model; similar to Foreshadow,

LVI’s proof-of-concept attacks use modification of the page ta-
ble entries and single-step execution (again using SGX-Step)
against enclave applications.

CacheOut [88, 90], is an MDS-style attack which similarly
excels in targeting Intel SGX. Similar to Foreshadow, it can
extract enclave contents even when the enclave is idle. Cache-
Out can sample reads by evicting the L1D cache and then
sampling the data from from the line fill buffer (a microar-
chitectural cache). Again similar to Foreshadow, CacheOut is
able to use instructions for swapping in and out enclave pages
to force desired data into L1D and into the line fill buffer to
read from any enclave, and again is able to use that to attack
the Intel Quote Enclave to be able to sign fake attestation
quotes, undermining SGX attestation.

Although Intel SGX is the most studied TEE, there have
been vulnerabilities demonstrated in other TEEs as well, in-
cluding ARM TrustZone [13] and AMD-SEV [10,52,60,100].
In the long term, TEEs must address microarchitectural side
channels and other defects for their alternative security model
to be seen as sound.

10 Future

We identify seven challenges and avenues for future work:

1. Comparing performance and other tradeoffs between
protection mechanisms. Research tends to compare
mechanisms on a single CPU or simulator. How can
comparisons become more generalizable?

2. Exploring tradeoffs in implementation of existing
and experimental mechanisms. For example, despite
decades of research, TLB design [22, 38] is still being
questioned. Given a protection mechanism, what is the
most efficient implementation? How does that change
across workloads?

3. Better synergizing software and hardware ap-
proaches. Software-based protection mechanisms ("ana-
lytic protection") and hardware-based mechanisms are
thought of as opposing approaches, but is it possible to
reconcile the two?

• Modern CPUs are designed with memory protec-
tion as a key part of the pipeline; for example, Sin-
gularity [1] was benchmarked on an AMD x86 pro-
cessor, which is likely to be microarchitecturally
optimized for virtual memory use. Could CPU ar-
chitecture and/or microarchitecture be redesigned
to more efficiently support software approaches?

• Analytic protection shifts overhead to either start
time or installation time. Could software verifica-
tion be accelerated by hardware?

4. Reimagining nested and redundant protection mech-
anisms. Legacy systems layer protection mechanisms

12



like sandwich toppings to achieve nested protection; how
much of this is needed, and how much is redundant?

• For example, x86 systems support segmentation,
virtual memory, group protection (through Intel
MPK), and TEEs (through Intel SGX or TDX)
to achieve nested protection, a single application
could rely on all of these. Which are redundant?

• Capability systems, such as CHERI [102], seem
to be efficient for allowing nested protection. Can
other mechanisms be reengineered for better nest-
ing?

• On the other hand, redundancy in systems can
sometimes be useful, such as for RMM [39], which
combines a form of segmentation with page-based
virtual memory, which are unnested. When might
redundancy be useful, and when might it be a bur-
den?

5. Battling the incumbency advantage of legacy systems.
Existing systems rely on specific existing mechanisms
and cannot easily be changed.

• What kinds of systems are less hindered by legacy?
For example, embedded and IoT systems are often
fertile grounds for alternative designs. We iden-
tify serverless computing as a possible candidate;
while traditional cloud computing offerings such
as Amazon EC2 offer virtual machines of a spe-
cific operating system on a specific architecture, a
Function as a Service (FaaS) platform may only
need to support a certain language runtime.

• How can applications relying on older mechanisms
continue to be supported? Is it better to continue
to support older mechanisms in hardware, or to
emulate them? For example, Apple Rosetta is a
proven effective binary translator for supporting
x86 applications on ARM; can applications relying
on older mechanisms be easily translated?

6. Reimagining TEE design. While TEEs like Intel SGX
and ARM TrustZone are widely deployed, the TEE de-
sign space remains fluid.

• Relating to redundancy, TEE solutions are usually
implemented as another memory protection layer.
To reduce such redundancy and overhead, how can
TEEs be better integrated with existing protection
mechanisms, or existing mechanisms with TEEs?

• In many applications, such as ML-based ones, the
majority of computation is done off on the CPU,
such as on a GPU or TPU. How can TEE design be
applied to other computational devices? Graviton
[93] is an example of a TEE design for GPUs, but

how can TEEs be integrated across a heterogeneous
computing system?

7. Closing microarchitectural side and covert channels.
As long as they remain open, memory security cannot
be guaranteed.

• Future microarchitecture designs must close these
channels. How can these channels be closed with
minimum sacrifices to performance? And while
hardware with such vulnerabilities remain in de-
ployment, what mitigations can be made in soft-
ware or microcode?

• How can disturbances such as rowhammer and
RowPress be avoided? Rowhammer attacks are
currently thwarted on commercial DDR5 DIMMs,
but hardware manufacturers are not transparent
about their solutions. Are DDR5 DIMMs truly se-
cure, or do their defenses rely on security through
obscurity?

11 Conclusion

We have have explored and discussed the mechanisms of
memory protection.

12 Acknowledgements

This paper was produced for COMP 992: Master’s (Non-
Thesis) in the spring semester of 2024 at the University of
North Carolina at Chapel Hill.

References

[1] Mark Aiken, Manuel Fähndrich, Chris Hawblitzel,
Galen Hunt, and James Larus. Deconstructing pro-
cess isolation. In Proceedings of the 2006 workshop
on Memory system performance and correctness, pages
1–10, 2006.

[2] Alibaba. Alibaba cloud released industry’s first trusted
and virtualized instance with support for sgx 2.0
and tpm. https://www.alibabacloud.com/blog/
alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_
596821, October 2020.

[3] Alibaba. Alibaba cloud, elastic compute
services, instance type families, overview.
https://www.alibabacloud.com/help/
doc-detail/60576.htm?spm=a2c63.p38356.
b99.95.32ae1160CQKT0I, August 2023.

[4] AMD. Strengthening vm isolation with in-
tegrity protection and more. https://www.

13

https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/blog/alibaba-cloud-released-industrys-first-trusted-and-virtualized-instance-with-support-for-sgx-2-0-and-tpm_596821
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://www.alibabacloud.com/help/doc-detail/60576.htm?spm=a2c63.p38356.b99.95.32ae1160CQKT0I
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf


amd.com/content/dam/amd/en/documents/
epyc-business-docs/white-papers/
SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.
pdf.

[5] ARM. Unlocking the power of data
with arm cca. https://community.
arm.com/arm-community-blogs/b/
architectures-and-processors-blog/posts/
unlocking-the-power-of-data-with-arm-cca.

[6] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas
Knauth, Andre Martin, Christian Priebe, Joshua Lind,
Divya Muthukumaran, Dan O’keeffe, Mark L Stillwell,
et al. SCONE: Secure linux containers with Intel SGX.
In 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pages 689–703,
2016.

[7] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky,
Patrick Jauernig, Matthias Klimmek, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. {CURE}: A security
architecture with CUstomizable and resilient enclaves.
In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 1073–1090, 2021.

[8] M Baker-Harvey, J Chase, H Levy, and E Lazowska.
Opal: A single address space system for 64-bit archi-
tecture. In IEEE Workshop on Workstation Operating
Systems, 1992.

[9] Andrew Baumann, Marcus Peinado, and Galen Hunt.
Shielding applications from an untrusted cloud with
haven. ACM Transactions on Computer Systems
(TOCS), 33(3):1–26, 2015.

[10] Robert Buhren, Hans-Niklas Jacob, Thilo Krachen-
fels, and Jean-Pierre Seifert. One glitch to rule them
all: Fault injection attacks against amd’s secure en-
crypted virtualization. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 2875–2889, 2021.

[11] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar,
Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on meltdown-resistant cpus. In Proceedings
of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2019.

[12] Nicholas P Carter, Stephen W Keckler, and William J
Dally. Hardware support for fast capability-based ad-
dressing. ACM SIGOPS Operating Systems Review,
28(5):319–327, 1994.

[13] David Cerdeira, Nuno Santos, Pedro Fonseca, and San-
dro Pinto. Sok: Understanding the prevailing security
vulnerabilities in trustzone-assisted tee systems. In
2020 IEEE Symposium on Security and Privacy (SP),
pages 1416–1432. IEEE, 2020.

[14] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley,
and Edward D. Lazowska. Sharing and protection in
a single-address-space operating system. ACM Trans.
Comput. Syst., 12(4):271–307, nov 1994.

[15] Hyok-Sung Choi and Hee-Chul Yun. Context switch-
ing and ipc performance comparison between uclinux
and linux on the arm9 based processor. In SAMSUNG
Tech. Conf, 2005.

[16] Intel Corporation. Intel® 64 and IA-32 Architectures
Software Developer’s Manual. Intel Corporation, 2024.

[17] Victor Costan and Srinivas Devadas. Intel sgx ex-
plained. Cryptology ePrint Archive, Paper 2016/086,
2016. https://eprint.iacr.org/2016/086.

[18] Alan Donovan, Robert Muth, Brad Chen, and David
Sehr. Pnacl: Portable native client executables. Google
White Paper, 2010.

[19] Zakir Durumeric, Frank Li, James Kasten, Johanna
Amann, Jethro Beekman, Mathias Payer, Nicolas
Weaver, David Adrian, Vern Paxson, Michael Bailey,
et al. The matter of heartbleed. In Proceedings of the
2014 conference on internet measurement conference,
pages 475–488, 2014.

[20] eBPF. ebpf documentation. https://ebpf.io/
what-is-ebpf/, April 2024.

[21] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel,
Orion Hodson, Galen Hunt, James R Larus, and Steven
Levi. Language support for fast and reliable message-
based communication in singularity os. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference
on Computer Systems 2006, pages 177–190, 2006.

[22] Krishnan Gosakan, Jaehyun Han, William Kuszmaul,
Ibrahim N Mubarek, Nirjhar Mukherjee, Karthik Sri-
ram, Guido Tagliavini, Evan West, Michael A Ben-
der, Abhishek Bhattacharjee, et al. Mosaic pages: Big
TLB reach with small pages. In Proceedings of the
28th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, Volume 3, pages 433–448, 2023.

[23] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
Kaslr is dead: long live kaslr. In Engineering Secure
Software and Systems: 9th International Symposium,
ESSoS 2017, Bonn, Germany, July 3-5, 2017, Proceed-
ings 9, pages 161–176. Springer, 2017.

14

https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/unlocking-the-power-of-data-with-arm-cca
https://eprint.iacr.org/2016/086
https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/


[24] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo
Chen. {EPK}: Scalable and efficient memory protec-
tion keys. In 2022 USENIX Annual Technical Confer-
ence (USENIX ATC 22), pages 609–624, 2022.

[25] Andreas Haas, Andreas Rossberg, Derek L Schuff,
Ben L Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the
web up to speed with webassembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 185–200,
2017.

[26] J Alex Halderman, Seth D Schoen, Nadia Heninger,
William Clarkson, William Paul, Joseph A Calandrino,
Ariel J Feldman, Jacob Appelbaum, and Edward W Fel-
ten. Lest we remember: cold-boot attacks on encryp-
tion keys. Communications of the ACM, 52(5):91–98,
2009.

[27] Norm Hardy. The confused deputy: (or why capa-
bilities might have been invented). ACM SIGOPS
Operating Systems Review, 22(4):36–38, 1988.

[28] Trong-Thuc Hoang, Ckristian Duran, Duc-Thinh
Nguyen-Hoang, Duc-Hung Le, Akira Tsukamoto, Ku-
niyasu Suzaki, and Cong-Kha Pham. Quick boot of
trusted execution environment with hardware accelera-
tors. IEEE Access, 8:74015–74023, 2020.

[29] Merle E Houdek, Frank G Soltis, and Roy L Hoffman.
Ibm system/38 support for capability-based address-
ing. In Proceedings of the 8th annual symposium on
Computer Architecture, pages 341–348, 1981.

[30] Galen C Hunt and James R Larus. Singularity: re-
thinking the software stack. ACM SIGOPS Operating
Systems Review, 41(2):37–49, 2007.

[31] IBM. Ibm cloud data shield now generally avail-
able. https://www.ibm.com/blog/announcement/
ibm-cloud-data-shield-now-generally-available/,
April 2020.

[32] IBM. Provisioning a bare metal server with
intel® software guard extension architecture.
https://cloud.ibm.com/docs/bare-metal?
topic=bare-metal-bm-server-provision-sgx,
January 2023.

[33] IBM. z/Architecture Principles of Operation. IBM,
2024.

[34] Intel. Intel trust domain extensions. https://cdrdv2.
intel.com/v1/dl/getContent/690419, 2023.

[35] Patrick Jattke, Max Wipfli, Flavien Solt, Michele
Marazzi, Matej Bölcskei, and Kaveh Razavi. Zenham-
mer: Rowhammer attacks on AMD Zen-based plat-
forms. In 33rd USENIX Security Symposium (USENIX
Security 2024), 2024.

[36] Alexandre Joannou, Jonathan Woodruff, Robert Ko-
vacsics, Simon W Moore, Alex Bradbury, Hongyan
Xia, Robert NM Watson, David Chisnall, Michael Roe,
Brooks Davis, et al. Efficient tagged memory. In 2017
IEEE International Conference on Computer Design
(ICCD), pages 641–648. IEEE, 2017.

[37] Gerry Kane and Joe Heinrich. MIPS RISC architec-
tures. Prentice-Hall, Inc., 1992.

[38] Konstantinos Kanellopoulos, Hong Chul Nam, Nisa
Bostanci, Rahul Bera, Mohammad Sadrosadati, Rakesh
Kumar, Davide Basilio Bartolini, and Onur Mutlu. Vic-
tima: Drastically increasing address translation reach
by leveraging underutilized cache resources. In Pro-
ceedings of the 56th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 1178–1195,
2023.

[39] Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar,
Adrián Cristal, Mark D Hill, Kathryn S McKinley,
Mario Nemirovsky, Michael M Swift, and Osman Ün-
sal. Redundant memory mappings for fast access to
large memories. ACM SIGARCH Computer Architec-
ture News, 43(3S):66–78, 2015.

[40] Tom Kilburn, David BG Edwards, Michael J Lanigan,
and Frank H Sumner. One-level storage system. IRE
Transactions on Electronic Computers, (2):223–235,
1962.

[41] Tom Kilburn, R Bruce Payne, and David J Howarth.
The atlas supervisor. In Proceedings of the Decem-
ber 12-14, 1961, eastern joint computer conference:
computers-key to total systems control, pages 279–294,
1961.

[42] Jeremie S Kim, Minesh Patel, A Giray Yağlıkçı, Hasan
Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu.
Revisiting rowhammer: An experimental analysis of
modern dram devices and mitigation techniques. In
2020 ACM/IEEE 47th Annual International Sympo-
sium on Computer Architecture (ISCA), pages 638–651.
IEEE, 2020.

[43] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin,
Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad
Lai, and Onur Mutlu. Flipping bits in memory without
accessing them: An experimental study of dram distur-
bance errors. ACM SIGARCH Computer Architecture
News, 42(3):361–372, 2014.

15

https://www.ibm.com/blog/announcement/ibm-cloud-data-shield-now-generally-available/
https://www.ibm.com/blog/announcement/ibm-cloud-data-shield-now-generally-available/
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-bm-server-provision-sgx
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419


[44] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. Dawg: A defense
against cache timing attacks in speculative execution
processors. In 2018 51st Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO),
pages 974–987. IEEE, 2018.

[45] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium
on Security and Privacy (S&P’19), 2019.

[46] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu
Kim, Moritz Lipp, Nicolas Boichat, Eric Shiu, Mattias
Nissler, and Daniel Gruss. Half-Double: Hammering
from the next row over. In 31st USENIX Security
Symposium (USENIX Security 22), pages 3807–3824,
2022.

[47] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yu-
val Yarom. Rambleed: Reading bits in memory without
accessing them. In 2020 IEEE Symposium on Security
and Privacy (SP), pages 695–711. IEEE, 2020.

[48] Dayeol Lee, Kevin Cheang, Alexander Thomas,
Catherine Lu, Pranav Gaddamadugu, Anjo Vahldiek-
Oberwagner, Mona Vij, Dawn Song, Sanjit A Seshia,
and Krste Asanovic. Cerberus: A formal approach
to secure and efficient enclave memory sharing. In
Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pages 1871–
1885, 2022.

[49] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste
Asanović, and Dawn Song. Keystone: An open frame-
work for architecting trusted execution environments.
In Proceedings of the Fifteenth European Conference
on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[50] Ruby B. Lee. Precision architecture. Computer,
22(01):78–79, 1989.

[51] Amit Levy, Bradford Campbell, Branden Ghena,
Daniel B Giffin, Pat Pannuto, Prabal Dutta, and Philip
Levis. Multiprogramming a 64kb computer safely and
efficiently. In Proceedings of the 26th Symposium on
Operating Systems Principles, pages 234–251, 2017.

[52] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li,
and Yueqiang Cheng. Tlb poisoning attacks on amd
secure encrypted virtualization. In Proceedings of the
37th Annual Computer Security Applications Confer-
ence, pages 609–619, 2021.

[53] Jochen Liedtke. Improving ipc by kernel design. In
Proceedings of the fourteenth ACM symposium on Op-
erating systems principles, pages 175–188, 1993.

[54] Jochen Liedtke. On micro-kernel construction. ACM
SIGOPS Operating Systems Review, 29(5):237–250,
1995.

[55] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Ste-
fan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading ker-
nel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

[56] Haocong Luo, Ataberk Olgun, Abdullah Gi-
ray Yağlıkçı, Yahya Can Tuğrul, Steve Rhyner,
Meryem Banu Cavlak, Joël Lindegger, Mohammad
Sadrosadati, and Onur Mutlu. Rowpress: Amplifying
read disturbance in modern dram chips. In Proceed-
ings of the 50th Annual International Symposium on
Computer Architecture, pages 1–18, 2023.

[57] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, pages 259–270, 1993.

[58] Frank McKeen, Ilya Alexandrovich, Alex Berenzon,
Carlos V. Rozas, Hisham Shafi, Vedvyas Shanbhogue,
and Uday R. Savagaonkar. Innovative instructions and
software model for isolated execution. In Proceedings
of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy (HASP
13). ACM, 2013.

[59] Microsoft. Dcsv3 and dcdsv3-series.
https://learn.microsoft.com/en-us/azure/
virtual-machines/dcv3-series, January 2023.

[60] Mathias Morbitzer, Manuel Huber, Julian Horsch, and
Sascha Wessel. Severed: Subverting amd’s virtual ma-
chine encryption. In Proceedings of the 11th European
Workshop on Systems Security, pages 1–6, 2018.

[61] Vikram Narayanan, Tianjiao Huang, David Detweiler,
Dan Appel, Zhaofeng Li, Gerd Zellweger, and Anton
Burtsev. RedLeaf: isolation and communication in a
safe operating system. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 21–39, 2020.

[62] Kyndylan Nienhuis, Alexandre Joannou, Thomas
Bauereiss, Anthony Fox, Michael Roe, Brian Campbell,
Matthew Naylor, Robert M Norton, Simon W Moore,
Peter G Neumann, et al. Rigorous engineering for
hardware security: Formal modelling and proof in the
cheri design and implementation process. In 2020

16

https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series
https://learn.microsoft.com/en-us/azure/virtual-machines/dcv3-series


IEEE Symposium on Security and Privacy (SP), pages
1003–1020. IEEE, 2020.

[63] Aleph One. Smashing the stack for fun and profit.
Phrack magazine, 7(49):14–16, 1996.

[64] Lois Orosa, Ulrich Rührmair, A Giray Yaglikci, Hao-
cong Luo, Ataberk Olgun, Patrick Jattke, Minesh Patel,
Jeremie Kim, Kaveh Razavi, and Onur Mutlu. Spy-
hammer: Using rowhammer to remotely spy on tem-
perature. arXiv preprint arXiv:2210.04084, 2022.

[65] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo,
Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh
Patel, Jeremie S Kim, and Onur Mutlu. A deeper look
into rowhammer’s sensitivities: Experimental analysis
of real dram chips and implications on future attacks
and defenses. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, pages
1182–1197, 2021.

[66] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: the case of aes. In
Topics in Cryptology–CT-RSA 2006: The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose,
CA, USA, February 13-17, 2005. Proceedings, pages
1–20. Springer, 2006.

[67] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon,
and Taesoo Kim. libmpk: Software abstraction for
intel memory protection keys (intel {MPK}). In 2019
USENIX Annual Technical Conference (USENIX ATC
19), pages 241–254, 2019.

[68] David A Patterson and John L Hennessy. Computer
Organization and Design: 5th edition. Morgan Kauf-
mann, 2014.

[69] Peter Pessl, Daniel Gruss, Clémentine Maurice,
Michael Schwarz, and Stefan Mangard. DRAMA: Ex-
ploiting DRAM addressing for Cross-CPU attacks. In
25th USENIX security symposium (USENIX security
16), pages 565–581, 2016.

[70] Ludovic Piètre-Cambacédès and Claude Chaudet. The
sema referential framework: Avoiding ambiguities in
the terms “security” and “safety”. International Jour-
nal of Critical Infrastructure Protection, 3(2):55–66,
2010.

[71] Sandro Pinto and Nuno Santos. Demystifying arm
trustzone: A comprehensive survey. ACM computing
surveys (CSUR), 51(6):1–36, 2019.

[72] L. Piètre-Cambacédès and M. Bouissou. Cross-
fertilization between safety and security engineering.
Reliability Engineering System Safety, 110:110–126,
2013.

[73] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. Crosstalk: Speculative
data leaks across cores are real. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1852–1867.
IEEE, 2021.

[74] Dennis M Ritchie and Ken Thompson. The unix
time-sharing system. Bell System Technical Journal,
57(6):1905–1929, 1978.

[75] Mohamed Sabt, Mohammed Achemlal, and Abdelmad-
jid Bouabdallah. Trusted execution environment: What
it is, and what it is not. In 2015 IEEE Trustcom/Big-
DataSE/ISPA, volume 1, pages 57–64, 2015.

[76] Jerome H Saltzer. Protection and the control of in-
formation sharing in multics. Communications of the
ACM, 17(7):388–402, 1974.

[77] Casper A. Scalzi, Alan G. Ganek, and Richard J.
Schmalz. Enterprise systems architecture/370: An
architecture for multiple virtual space access and au-
thorization. IBM systems journal, 28(1):15–38, 1989.

[78] Moritz Schneider, Aritra Dhar, Ivan Puddu, Kari Kos-
tiainen, and Srdjan Capkun. Composite enclaves: To-
wards disaggregated trusted execution. arXiv preprint
arXiv:2010.10416, 2020.

[79] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In CCS, 2019.

[80] Hovav Shacham. The geometry of innocent flesh on
the bone: Return-into-libc without function calls (on
the x86). In Proceedings of the 14th ACM conference
on Computer and communications security, pages 552–
561, 2007.

[81] Youren Shen, Hongliang Tian, Yu Chen, Kang Chen,
Runji Wang, Yi Xu, Yubin Xia, and Shoumeng Yan.
Occlum: Secure and efficient multitasking inside a
single enclave of Intel SGX. In Proceedings of the
Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 955–970, 2020.

[82] Alex Thomas, Stephan Kaminsky, Dayeol Lee, Dawn
Song, and Krste Asanovic. Ertos: Enclaves in real-time
operating systems. Woodstock, 2018.

[83] Chia-Che Tsai, Donald E Porter, and Mona Vij.
Graphene-SGX: A practical library OS for unmodi-
fied applications on SGX. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 645–
658, 2017.

17



[84] Emil Tsalapatis, Ryan Hancock, Tavian Barnes, and
Ali José Mashtizadeh. The aurora single level store
operating system. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles,
pages 788–803, 2021.

[85] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Thomas F Wenisch, Yuval Yarom, and Raoul
Strackx. Foreshadow: Extracting the keys to the intel
{SGX} kingdom with transient {Out-of-Order} execu-
tion. In 27th USENIX Security Symposium (USENIX
Security 18), pages 991–1008, 2018.

[86] Jo Van Bulck, Daniel Moghimi, Michael Schwarz,
Moritz Lipp, Marina Minkin, Daniel Genkin, Yarom
Yuval, Berk Sunar, Daniel Gruss, and Frank Piessens.
LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In 41th IEEE Sympo-
sium on Security and Privacy (S&P’20), 2020.

[87] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-
step: A practical attack framework for precise enclave
execution control. In Proceedings of the 2nd Workshop
on System Software for Trusted Execution, pages 1–6,
2017.

[88] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.
https://sgaxeattack.com/, 2020.

[89] Stephan Van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue in-
flight data load. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 88–105. IEEE, 2019.

[90] Stephan van Schaik, Marina Minkin, Andrew Kwong,
Daniel Genkin, and Yuval Yarom. Cacheout: Leaking
data on intel cpus via cache evictions. In S&P, May
2021.

[91] Stephan van Schaik, Alex Seto, Thomas Yurek, Adam
Batori, Bader AlBassam, Christina Garman, Daniel
Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
SoK: SGX.Fail: How stuff get eXposed. 2022.

[92] Thomas Van Strydonck, Job Noorman, Jennifer Jack-
son, Leonardo Alves Dias, Robin Vanderstraeten,
David Oswald, Frank Piessens, and Dominique De-
vriese. Cheri-tree: Flexible enclaves on capability ma-
chines. In 2023 IEEE 8th European Symposium on
Security and Privacy (EuroS&P), pages 1143–1159.
IEEE, 2023.

[93] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno.
Graviton: Trusted execution environments on GPUs.

In 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 18), pages 681–696,
2018.

[94] Victor A Vyssotsky, Fernando J Corbató, and Robert M
Graham. Structure of the multics supervisor. In
Proceedings of the November 30–December 1, 1965,
fall joint computer conference, part I, pages 203–212,
1965.

[95] Andrew Waterman, Krste Asanović, and John Hauser.
The risc-v instruction set manual - volume ii: Privi-
leged architecture - version 20211203. 2021.

[96] Robert NM Watson, Graeme Barnes, Jessica Clarke,
Richard Grisenthwaite, Peter Sewell, Simon W Moore,
and Jonathan Woodruff. Arm morello programme: Ar-
chitectural security goals and known limitations. Tech-
nical report, University of Cambridge, Computer Lab-
oratory, 2023.

[97] Robert NM Watson, Simon W Moore, Peter Sewell,
and Peter G Neumann. An introduction to cheri. Tech-
nical report, University of Cambridge, Computer Lab-
oratory, 2019.

[98] Robert NM Watson, Jonathan Woodruff, Peter G Neu-
mann, Simon W Moore, Jonathan Anderson, David
Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. Cheri: A hybrid capability-system ar-
chitecture for scalable software compartmentalization.
In 2015 IEEE Symposium on Security and Privacy,
pages 20–37. IEEE, 2015.

[99] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silber-
stein, Raoul Strackx, Thomas F Wenisch, and Yuval
Yarom. Foreshadow-ng: Breaking the virtual mem-
ory abstraction with transient out-of-order execution.
2018.

[100] Jan Werner, Joshua Mason, Manos Antonakakis,
Michalis Polychronakis, and Fabian Monrose. The
severest of them all: Inference attacks against secure
virtual enclaves. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications
Security, pages 73–85, 2019.

[101] Jonathan Woodruff, Alexandre Joannou, Hongyan
Xia, Anthony Fox, Robert M Norton, David Chisnall,
Brooks Davis, Khilan Gudka, Nathaniel W Filardo,
A Theodore Markettos, et al. Cheri concentrate: Prac-
tical compressed capabilities. IEEE Transactions on
Computers, 68(10):1455–1469, 2019.

[102] Jonathan Woodruff, Robert NM Watson, David Chis-
nall, Simon W Moore, Jonathan Anderson, Brooks

18

https://sgaxeattack.com/


Davis, Ben Laurie, Peter G Neumann, Robert Norton,
and Michael Roe. The cheri capability model: Revisit-
ing risc in an age of risk. ACM SIGARCH Computer
Architecture News, 42(3):457–468, 2014.

[103] Yuval Yarom and Katrina Falkner. {FLUSH+
RELOAD}: A high resolution, low noise, l3 cache
{Side-Channel} attack. In 23rd USENIX security sym-
posium (USENIX security 14), pages 719–732, 2014.

[104] Bennet Yee, David Sehr, Gregory Dardyk, J Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Com-
munications of the ACM, 53(1):91–99, 2010.

[105] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carl-
son, and Prateek Saxena. Elasticlave: An efficient
memory model for enclaves. In 31st USENIX Security
Symposium (USENIX Security 22), pages 4111–4128,
2022.

[106] ZDNet. Cloud security: Microsoft azure’s
sgx vms hit ga, google’s shielded vm is now
default. https://www.zdnet.com/article/
cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/,
April 2020.

19

https://www.zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/
https://www.zdnet.com/article/cloud-security-microsoft-azures-sgx-vms-hit-ga-googles-shielded-vm-is-now-default/

	Introduction
	Scope
	Safety versus security
	Processing entities
	Protection models

	Physical memory
	Formalization
	In practice

	Segmentation
	Formalization
	Permissions generalization
	In practice

	Virtual memory
	Formalization
	Generalization
	In practice
	Beyond isolation

	Group protection
	Formalization
	In practice

	Analytic protection
	Formalization
	In practice

	Capabilities
	Formalization
	In practice

	Trusted Execution Environments (TEEs)
	Formalization
	In practice

	Exploits against memory security
	Bugs
	Transient execution attacks
	Rowhammer and physical attacks
	Against TEEs

	Future
	Conclusion
	Acknowledgements

